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LETTER TO THE EDITOR

Current localization in nonlinear inhomogeneous media
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‡ Materials Science Institute, University of Oregon, Eugene, OR 97403, USA

Received 13 June 1996

Abstract. We consider the transport of electric current in inhomogeneous media with nonlinear
conductivity. The interplay between disorder and nonlinearity gives rise to local enhancements
of the current density. We study this current localization for a network of nonlinear resistors
with the degree of nonlinearity varying at random through the system, which leads to a crossover
from weak to strong localization with increasing voltage. We study the average fluctuations and
the maximum value of the local current and discuss experimental consequences of these results.

Inhomogeneous media showing nonlinear response to external fields have been studied by
various authors [1]. Most of these works focus on the global nonlinear response of the
system (e.g. on nonlinear susceptibilities or conductances [2]). However, the combination
of disorder and nonlinearity strongly affects the local behaviour and gives rise to novel
phenomena. One of them is the voltage-driven crossover from a nearly homogeneous
current density to a strongly inhomogeneous density, which is the subject of this letter.

Our interest in this transition is stimulated by recent observations of current localization
in varistor ceramics [3, 4]. Varistors display highly nonlinear current–voltage characteristics
which can be described by a power law in the breakdown region. This nonohmic behaviour
is due to the existence of double Schottky barriers at grain boundaries [4]. Each grain
boundary acts as a nonlinear resistor, with a nonlinearity exponent differing from one
grain boundary to another and some boundaries even being linear resistors [5]. At low
external voltages, the current is almost homogeneously distributed over the sample, whereas
it becomes more and more localized with increasing voltage. This local enhancement of
current eventually causes the failure of the varistor [6]. Therefore, the investigation of
current localization is not only of academic interest but of practical importance as well.

In this letter, we study general properties of current localization on the example of a
regular lattice whose bonds have a nonlinear conductivityσ ∼ V α with the exponentα being
a random quantity. Random resistor networks (RRNs) have been widely used to model the
transport behaviour in disordered systems [7, 8] or to simulate electrical and mechanical
breakdown processes [9]. The percolation problem of linear RRNs has been studied [8],
and the current distribution has been characterized [10]. Nonlinear RRNs whose bonds
obey a power law relation between voltage and current with the exponent being constant
throughout the network have been considered [11, 12].

However, in the physical systems considered here, e.g. varistor ceramics, the degree
of nonlinearity varies throughout the material. Therefore the behaviour changes from that
of a nearly homogeneous network at low voltages to that of a strongly disordered network
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for higher voltages, the current localization increasing with voltage. Only in the limit of
very high voltages is the transport restricted to a single backbone and can be described by
percolation theory. In this letter, we study a model with varying degree of nonlinearity
which displays this voltage-driven current localization.

Our calculations are carried out on two-dimensional lattices withN nodes in both
horizontal and vertical directions, and linear system sizes up toN = 150. The bonds of the
network are assigned conductances

σij = (
Vij

)αij (1)

whereVij is the voltage drop over the bond connecting the nodesi andj andαij is a random
variable. If the voltage drop is equal to one for all bonds, the system behaves like a network
of identical ohmic resistors with unit conductance. In real systems, the conductances for
unit voltage would certainly be random quantities, causing an additional inhomogeneity of
the local currents. However, this inhomogeneity does not change with increasing voltage
and is, at least at high voltages, small compared to that caused by the varying degree of
nonlinearity. Thus we neglect it to keep the model simple.

The external voltage is applied to the top and bottom of the network. Periodic boundary
conditions are used for the other two edges. The current flow through the network at fixed
applied voltage is calculated using Kirchoff’s law of current conservation at each node∑

j

Iij =
∑

j

V
αij

ij Vij = 0 i = 1, . . . , N2 (2)

where the sum runs over all neighboursj of the nodei. Solutions of this set ofN2

nonlinear coupled equations were obtained numerically using a Newton–Raphson method.
From the values of the voltages at each node, the local currents and the global current–
voltage characteristic were computed. In this letter we present the results of simulations on
a triangular lattice (see figure 1). Since the phenomenon of current localization does not
depend on the particular distribution ofα, a uniform distribution ofα between zero and
αmax = 1 is used [13].

Figure 1. A schematic diagram of a triangular lattice with 5× 3 nodes. The external voltage is
applied between the horizontal bus bars at the top and bottom of the network.

We now turn to the discussion of the current localization. IfV , denoting the external
voltage normalized by the linear system size, is equal to unity, all sloped (i.e. not horizontal,
see figure 1) bonds have unit conductance and contribute equally to the current flow through
the network. No current is flowing through the horizontal bonds. As the voltage is increased,
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the differences between the exponentsα give rise to different conductances of the bonds.
The current starts to seek out higher-conducting paths (largeα) and begins to localize. The
same happens if the voltage is reduced belowV = 1, in which case the highly conducting
bonds are those with the lowest values ofα [14]. Figure 2 shows an example of this
voltage-dependent localization.

Figure 2. Evolution of the distribution of local currents with increasing applied voltage (V = 4,
1024, 4× 106 and 1.7 × 1010 from left to right) for a 20× 20 square lattice. Dark regions
correspond to low, light regions to high current. The current distribution is rescaled to the
maximum and minimum value in each frame.

We introduce two quantities to characterize the current localization. The first one is the
ratio of the total current flowing through the network to the maximum current in a single
bond,

neff = Itotal/ max
(
Iij

)
(3)

with Iij from (2). The quantityneff is related to the infinite moment of the current
distribution and can be understood as being the effective number of current paths through
the network. In the limit of a uniform system, the currents through the sloped bonds are
all equal to the 2N th part of the total current. Thus,neff = 2N . In the opposite limit
of maximum localization, the current is flowing in just one filament. The maximum local
current is therefore equal to the total current, andneff = 1. Although in these two extreme
casesneff is an integer, in general it will not be. Figure 3 shows the effective path number
for a single system with 100× 100 nodes against normalized voltage.

A second quantity we use is related to the second moment of the current distribution.
By analogy to the theory of localized electronic states in disordered systems [15], we define
a participation ratio

p = 〈
Iij

〉2/〈
I 2
ij

〉
(4)

where the average has to be carried out over all sloped bonds in the network. The
participation ratio corresponds to the portion of bonds effectively participating in the
current transport. For a system of identical bonds, all local currents are identical. Thus,
〈Iij 〉2 = 〈I 2

ij 〉 andp = 1. In the opposite limit of localization to one filament, theN bonds
belonging to the filament carry all the current andp = 1/2N . The participation ratio is
shown in figure 4 for the 100×100 system. ForV = 1, the system is composed of identical
conductors and the participation ratio is unity; it decreases due to the current localization
for higher or lower voltages.

A comparison of figures 3 and 4 shows that, although both quantities have their maxima
for V = 1, they display an entirely different behaviour. The effective path number decays
extremely fast asV deviates from unity while the participation ratio is still close to one. This
is due to the fact thatneff , being related to the infinite moment of the current distribution,
is much more sensitive to fluctuations of the conductances thanp, which is related to the
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Figure 3. The effective numberneff of current paths: dots, simulation data for a single sample;
solid line, approximation (6).

Figure 4. The portionp of bonds participating in the current transport: dots, simulation data
for a single sample; solid line, approximation (7).

second moment and thus characterizes rather the overall behaviour of the system. However,
in experiments the maximum local current, characterized byneff , is often very important.
In varistor ceramics, e.g., it is responsible for the failure of the material even if the average
current is not very high.

The different behaviour ofneff and p can be understood by using a simple
approximation which consists in looking at a single bond. This is justified forV ≈ 1,
where the localization is only weak so that hardly any redistribution of current through
the horizontal bonds takes place, and the voltage drops across the sloped bonds differ only
slightly. If we neglect these differences in the bond voltages, we can approximate the mean
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value of the current and of the current squared using〈
I n
ij

〉
=

∫ 1

0
dα V nαV n = V n

n ln V

(
V n − 1

)
. (5)

For the triangular lattice, the total current is equal to 2N〈Iij 〉 . For V > 1, the maximum
current through a bond is given by the value atα = 1, Imax = V 2, for V < 1 by the value
at α = 0, Imax = V . With (3), we obtain

neff = (2N/ ln V )(V − 1)/V V > 1

neff = (2N/ ln V )(V − 1) V < 1.
(6)

Equation (6) is shown as the solid curve in figure 3. Although the approximation we used
is very simple, it is in reasonable agreement with the numerical data close toV = 1; in
particular it is able to reproduce the cusplike behaviour. Using (5) with the definition (4)
of the participation ratio, we obtain

p = (2/ ln V )(V − 1)/(V + 1) V ≈ 1. (7)

Equation (7) corresponds to the solid curve in figure 4. It displays a horizontal tangent at
V = 1. The deviations of the estimates (6) and (7) from the simulation data arise since
collective effects of the whole array have been neglected. They will lead to smaller relative
fluctuations and thus higherp as well as to rare combinations of highly conducting bonds
which increase the maximum local current and thus decreaseneff .

Another important question is whether the characteristics of the network depend on the
details of the specific sample or are self-averaging for system sizeN → ∞ andV → ∞.
Here it is necessary to distinguish two different regimes. If the limitV → ∞ is performed
first (V → ∞ for a large, but finite system), the behaviour eventually reaches a critical
percolation regime, where the current transport takes place on a single backbone. The
physical properties strongly depend on the specific sample and their distributions remain
very wide even for large systems. If, however, the thermodynamic limit (N → ∞ for
any finiteV ) is performed first, the system stays in a ‘bulk’ regime where a macroscopic
number of paths is carrying the current. Hence the properties are self-averaging with their
fluctuations vanishing in the thermodynamic limit. A detailed analysis of the system size
dependence and the crossover between these two limiting regimes will be published else-
where [16].

Evidence for the existence of the two regimes is also found by considering the effective
conductanceσ of the network, being defined as the total current divided by applied voltage.
It is shown in figure 5 for a network with 100× 100 nodes as a function of the normalized
external voltageV . The asymptotic behaviour ofσ for very low and very high voltages
can be explained by percolation theory [8, 17], giving

σ ∼ V pcαmax V � 1

σ ∼ V (1−pc)αmax V � 1
(8)

for low and high voltages, respectively. For the triangular lattice,pc = 0.347. Equations (8)
correspond to the solid lines in figure 5, giving a very good agreement with the numerical
data in the low- and high-voltage regions, respectively, indicating that indeed a percolating
backbone is responsible for the current transport in these limits. For the region around
V = 1, the simulation data agree with the single bond approximation (5) forn = 1 (the
inset of figure 5).

In conclusion, we have studied voltage-driven current localization in inhomogeneous
media with nonlinear conductivity, using a random resistor network model where the degree
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Figure 5. Effective conductanceσ against normalized voltage: dots, simulation data for a single
sample; solid lines, (8). Inset, the transition region aroundV = 1. The solid line corresponds
to the approximation (5).

of nonlinearity varies throughout the system. We have found that the interplay between
nonlinearity and disorder leads to a crossover from weak to strong localization which is not
observed in previous models. In order to characterize the degree of current localization, two
quantities have been introduced, which can be regarded as the effective number of current
paths in the network and as the portion of bonds participating in the current transport. It
turns out that the effective path number decreases extremely fast from its maximum value,
indicating that the maximum local current is very high even if the average fluctuations of
local current are still small, i.e. the participation ratio is close to one. The effective path
number is very sensitive to rare events. Thus, a current-sensitive material will fail well
before the average current reaches the critical value [6]. A detailed analysis of the current
distribution function as well as results for different lattice types will be presented elsewhere
[16].

AV wishes to thank Professor D R Clarke for numerous discussions and for stimulating her
interest in the varistor topic. This work was supported by the German Academic Exchange
Service and the NSF under grant No DMR-95-10185.
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